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Abstract—We propose a thermodynamic model for a heterogeneous, aging. viscoelastic medium at
infinitesimal strains and analyze the main thermodynamic potentials. We find the conditions for
the relaxation measure. which guarantee the Second Law of thermodynamics to be satisfied.
Variational principles for viscoelastic bodies at isothermal and adiabatic loading are formulated.
The energy ratios for the determination of the interfuce at the phase transition are derived. We
analyze the local melting process in the viscoelastic body at isothermal loading and study the
rheology intluence on the development of a spherical liquid phase nucleus.

I. INTRODUCTION

This paper is devoted to the construction of thermodynamic potentials in the linear visco-
elasticity of aging media. We need a thermodynamic model to study (1) the stability of the
body. (2) the displacement of the interface during phasce transitions in solids, (3) the extension
of cracks in the medium and (4) the numcerical analysis of the stress ficlds. The thermo-
dynamics of materials with memory at finite strains was investigated by Coleman (1964).
Trapeznikov (1978) proposed a thermodynamic model of an aging viscoclastic medium.
Another approach to this problem was developed by Arutyunyan ef el. (1987). The defect
of these potentials is the necessity to introduce supplementary time-dependent functions or
free-energy kernels, which are difTicult to examine experimentally. The expressions for the
free energy of nonaging viscoclustic media were considered by Dafermos (1970a,b).

In the second part of the paper we formulate the variational principles for viscoelastic
media at isothermal and adiabatic loading. Our formulations are different from the standard
variational principles in clasticity (Landau and Lifshitz, 1976 ; Beedichevskii, 1983a) and
viscoclusticity (Rabotnov, 1979) because we consider the complete deformation process
and not just the initial and final states of the system. Then we discuss the connection between
introduced variational principles and the phenomenological approach based on the concept
of “availability criteria™ (Alts and Strehlow, 1984 ; Strehlow, 1988). We show that the
equilibrium equation and the stress boundary condition can be deduced from these vari-
ational principles. Moreover, using the variational principles we obtain the energy ratio on
the interface at the first-order phase transitions in a viscoelastic medium. The interface
conditions for the phase transformation in an clastic body at infinitesimal strains were
found by Roitburd (1971). The phase transitions in elastic bodices at finite strains have been
studied by Grinfel'd (1980), Gurtin (1983), Kondaurov and Nikitin (1983) and Fonscca
(1987).

In the third part of this paper we apply the obtained results to the problem of local
melting. We analyze the growth of the spherical liquid nucleus in aging viscoelastic media
at isothcrmal loading. The aging influence on the growth of the nucleus is analyzed. The
creation of a spherical nucleus in clastic media has been considered by Lifshitz and Gulida
(1952). Another approach to this problem was proposed by Johnson and Voorhces (1987).
The crcation of an ellipsoidal nucleus of melt in an elastic body was investigated by
Berdichevskii (1983b). The techniques used in these papers are founded on the hypothesis
that the nuclei are generated instantancously and cannot describe the growth of these nuclei.
The growth of nuclei in viscoelastic bodies during phase transformation was studied by
Arutyunyan and Drozdov (1985).
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2. THERMODYNAMIC POTENTIALS FOR AGING VISCOELASTIC MEDIA

The body 15 1n its natural state at temperature 8 = ¢}, and occupies the connected
domain Q with the smooth boundury I, Let us introduce the coordinate system & = () in
the domain Q. At the moment 1 = 0 body forces F(z, 2) and surface torces f(¢. ) are applied
to the body. We neglect the inerua forces and assume that the strains are infinitesimal. We
denote the displacement vector by u(t. $) and the corresponding strain tensor by «(7. 7):

¢ = (Vu+Vu'y 2. (1

The mechanical behaviour of the material obeys the constitutive laws of the aging
homogeneous and isotropic, linear viscoelastic body with elastic dilatation. We suppose
that the thermal expansion can be neglected and write the following expressions for the free
energy per unit mass ¥

W= W B — Hy (0= b,) — (0= 0,)2/(20,).

. “OR
plin = §I\'E-(r)+(i(t)[R({,O)c(z):c(r)+J (,’% (t.o)(elt)y —e(n) ety —e(t)) dr].

]

=l e=c—Y Rt.t)=G "(NGE)+ Q1)) (2)

where W, £, are the free energy and entropy per unit mass in the natural configuration at
the temperature 0y, p 1s the mass density, B denotes the mechanical energy per unit mass,
¢ > 01s the heat capacity per unit mass, K > 0 is the constant bulk modulus, G(£) > 0 is
the current shear modulus, Q(r, r) is the relaxation measure, £ is the unit tensor. We omit
the argument £ tor shortentng.

Expressions for the relaxation measures of some viscoclastic matenals are represented
in Arutyutyan and Kolmanovskii (1983). The function R(, t) is continuously differentiable
and satisfies the conditions:

R
R =1, R(t,1) >0, ‘ﬂr ()20, (0<t<). (3)
3

Identity (3) delines the norm of the reluxation measure and is accepted here for
convenience. The inequalities (3) guarantee the convexity of the specitic mechanical energy
in the natural configuration.

Equality (2) is the Taylor expansion of the specitic free energy W when third order
terms are neglected [see for example, Arutyunyan et al. (1987)].

The entropy per unit mass // = — P/l is given by the formula

H = Hy+c(0—=0,)/0,. )

The internal energy @ per unit mass is caleulated using the formula & =Y + /0. With
the aid of (2) and (4) we obtain

D= Qy+ W +c(0°—03)/(204), by =Wy + H,0,). (3)

Consider a heterogencous, aging body, in which different elements are created at
different moments of time [sec Arutyunyan and Kolmanovskii (1983)]. Denote by t*(J) €0
the time when the material clement is generated in the neighbourhood of the point . We
write the following expression for the specific mechanical encrgy of a nonhomogencous.
aging. viscoelastic medium:
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pH(n = §K52(1)+G(t—r*)l:R(t—r*. —1t*)e(t):e(t)

"CR
+J %1_—(!—1".r—r"')(e(t)——e(r)):(e(t)——e(r))dr:l. (6)
0

3. VARIATIONAL PRINCIPLES IN THE THEORY OF VISCOELASTICITY

Usually two types of loading processes are considered: isothermal and adiabatic
loading. We first deal with the isothermal case, when the body temperature is constant and
equal to 8,. Let the time ¢ > 0 and the deformation history {u(z.$). (0 < t < 1)} be fixed.
Denote by U(¢) the set of displacement fields «”(¢. &). which are continuously differentiable
in Q. Choose an admissible field «°(¢. &) € U(¢) and a corresponding strain field £"(¢. &). Here
and below we denote by the symbol with index 0" any admissible value of thermodynamic
quantity. The value of such a quantity, which is realized in the loading process is denoted
by the same symbol without index 0™,

From (2) and (6) it follows that Helmholtz free energy of the body is equal to

(1) = J pW() de = pW, QI+ (). Q] = j de. W)= j p (0 de,
) n

8]

pW() = §I\IE"(1)|:+G(r—r‘)[R(t—r“. — () e™1)

! (’R (1) O
+ P (t=t* =) (e () —e(D): (™) —e()) dr |,
=" " == 1, (N

where de is a volume clement and ds is a surface element,
Deline the work of external forees by the formula

Aty = A _()+ J pF(0)- (" (1) —u_ () dv + j S (W’ (1) —u_(1)) ds, 8)
0 ¢

where symbol X _ (1) denotes the limit of the function X(t) as T — 1 —0.
By virtue of Luric (1980), the free energy of the system £ is defined by

E(ty = P(1)—AQ). %
Now we may postulate the principle of minimum free energy of a system:
The real displacement field «(¢, &) minimizes the functional E(r) on the set U(r).
We will show that the equilibrium equation
Vea()+pF(t) =0 (10)
and the boundary condition on the surface I

N-a(t)=f(1), (Sel) (1

follow from this principle using the constitutive laws of a nonhomogeneous viscoelastic
media
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(e

R
&(1) = 3AE(1). s(n) = 2G(I——t*)[€(!)-—- j ¢ {(t—1* t—1%)e(1) dt_J. (12)

n €7

Here N is the outward unit normal vector to I, oz, &) is the stress tensor. 6 = o [,
s=0-— ¢l

Proof. Let the admissible variation of the displacement vector be du(s. &) and the
corresponding variation of the strain tensor be de(r. ). The variation of the function E(1)
15 equal to

.

OE(1) = J {Ké(!)dﬁ(()-{-QG(!—t*)I:R(l—t*. —t*)e(t)
Q

" ¢R .
+ J > {(t—t* .t —t*)}e(t) ~e(z) dr] : Oe(f)} de

o«

-

- j; pE(t) - oult) de — Jr Sty du() ds.

From this equality, (3) and (12) it follows that
SE(1) = J; [a(2): de(0)— pF (1) du()] dv ~ J;/‘(I)-(Su(t) ds. (13)

Using (1), (13) and Stokc’s formula we obtain
(1) = — Jﬂ [Vea(ty+pt(n))-ou(t)y de + J;{:\"a(r}—f(l)}':)‘u(!) ds. (1)

Hence the equalitics (10) and (11) follow from (14) as necessary conditions of being a
minimum of the function £(¢) because of the arbitrariness of the field du(s, &).

Now we consider adiabatic loading, i.¢. the heat flow to the body vanishes. In addition
we assume that the characteristic time for changing the external forees and the chuaracteristic
time for relaxing the stresses exceed the characteristic time which is necessary to cstablish
thermodynamic equilibrium. In this case the body is in the thermodynamic equilibrium
state at any ¢ 2 0 and the temperature ¢ does not depend on the coordinates.

Let the time £ 2 0 and the deformation history {0(1), 2(1, &), (0 < 1 < 1)} be fixed.
Denote by ©(1) the set of admissible temperature values 87°(r) 2 0. Let B(5) = ©(1) x U(1).
Choose an admissible element (0°(r), u"(1, &) e B(1). The internal energy of the body d(1)
and the entropy of the body FI(¢) are equal to

B(r) = pIQU[Dy + c((0°(1))* — 03)/(206)]+ W(2). (15)
(1) = pIQUH +c(0°(1) = 00)/0,]. (16)

The First Law of thermodynamics implics
By —-B_(1) = A(t)— A _(1). an

We postulate Gibbs® principle:

The real displacement field «(z, &) and the real temperature 0(s) maximize the entropy
of the body A(¢) on the subset B(r), whose clements obey the conservation of energy (17).
Substituting (15) in (17) and using (9) we get
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290 12
00 — L —
() = 0_(1)[1 + pCIQIG:_(f)(E' (1 E(t)):' .

This equality and (16) yield

- To_ 20, =
H(l)=p[Ql{Ho‘f-([‘?ﬂ—(l‘Fm(E_([)—E(I))) —‘l]} (18)

According to (18) the displacement field u(¢. &), which maximizes the entropy of the
body A(t) minimizes the free energy of the system E(¢). With the aid of (14) and (18) we
discover that Gibbs’ principle implies the equilibrium equation (10) in Q and the boundary
condition (11) on the surface I'.

4. GIBBS' PRINCIPLE AND THE SECOND LAW OF THERMODYNAMICS

Let us consider the adiabatic loading of an elastic body (G(1) = G = const, @(¢.7) = 0)
at time interval [0, T). Divide this interval by points ¢, = kA, A=T/N, k=0,1...., N.
Introduce the piccewise constant external forces Fy(r. &), fv(4. &) using the formulae

Fa(t.8) = F(6..8). fu(t.9) = flt. D). (e St <o)
Supposc that there exists a constant ¢, > 0 such that forany £ 2 0
1EU ) = F)lla < by 1= /) ]le € A (19)

where

1F(0NG = L F(1,8) F(t.8) dv,  1/IF = J; S, 8) f(1.8) ds.

Denote by (1, &) the displacement ficld corresponding to the forces Fy(1, &), fu(1 ).
One can show that according to (19) there exists a constant ¢ > 0 such that for any

tel0, 7]
u() —un(Dllg < cA. (20)

Suppose that at time ¢, —0 the body is in thermodynamic equilibrium under the action
of the forces F(s, -1, E). fltx .1, E). This state is characterized by the displacement field
uy(te, €) and the temperature 0y(1,). During the piecewise constant loading process the
forces F(1,, &) and f(1,, &) are applied to the body at the moment ¢,. Under the action of
these forces the body leaves the equilibrium state. We assume that the body tends to move
to another equilibrium statc and that the characteristic time of the transition process 1, is
proportional to the intensity of the change in the external forces

t = L1 F(t) ~ F(te - Do + 1/00) =St - )] (2hH

Here the constant ¢, > 0 depends on the mechanical propertics of the material and the
dimensions of the domain Q only.

The loading process is called a continuous one if the characteristic time of the external
forces changing exceeds the time which is necessary to establish thermodynamic equilibrium
in the body:
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T < Al (22)

From (19) and (21) it follows that the estimate (22) may be written as ¢,c, < 1. This
inequality is a restriction only on the rate of change in the external load.

According to (22) under the piecewise constant loading process at the moment ¢, , —0
the body is in a thermodynamic state of equilibrium which is characterized by the dis-
placement field uy{(t,, ;. &) and the temperature 0y(¢. ).

Writing the equation of balance of energy and the Second Law of thermodynamics for
the adiabatic loading process and by virtue of Strehlow (1988) we neglect the kinetic energy
of the body to get

&)= LpFN(t)-u?v(t) de+ jfiv(r)'u‘N(t) ds. (23)

H()>0. 24

Integrating (23) from ¢, to te[t. &, ) we find

(b(’)—d)(’k) = LPF(‘/:) < (un(t) —ux(ty)) de+ J;_/(’k) *(uy(0) —uy(t)) ds. (25)

From (24) it follows that the entropy of the body A(r) does not decrease in time.
Hence, at the moment 1, ., the function () has its maximum valuc on the set of the
displacement ficlds uy(2, &) and the temperature ficlds 04(z, &), which arc realized during the
transition process and satisfy eqn (25).

According to Gibbs’ principle, at the moment ¢, , | the function £1(¢) has its maximum
valuc on the set of admissible displacement fields w°(z, , . &) and temperature ficlds 0°(z, , ;).
which satisfy (25)at ¢ = ¢, , .

Note that Gibbs™ principle does not follow from the Second Law of thermodynamics
and vice versa. By the variational principle we find a maximum value of the function F(r)
on the set of any admissible displacement field «°(¢, ,, &), which may be wider than the
set of displacement fields realized during the transition process. On the other hand the
heterogeneous temperature fields 0y(¢, £) may be realized during the transition process, but
by formulating Gibbs’ principle we consider the homogencous temperature fields 0°(¢,, )
only.

We note the analogy between these assertions and the ergodic property of stochastic
processes. By virtue of Gikhman and Skorokhod (1977), the stationary stochastic process
is called ergodic if its mean value in time coincides with its mean value on the set of
realizations. The Second Law of thermodynamics says that the entropy of the body has its
maximum value in time at the interval [¢,, . ) at a final equilibrium state. Gibbs’ principle
says that the real equilibrium state maximizes the entropy of the body on the set of
admissible equilibrium states. Equivalence of these assertions means that nonequilibrium
transition processes have the ergodic property {see Landau and Lifshitz (1976)].

By (20) we may proceed to the limit as N — oo and get Gibbs’ principle formulated in
Section 2 for the continuous loading processes in elastic bodics. Existence of viscosity in
the material does not change our formulation of Gibbs’ principle if we suppose that the
characteristic time of relaxation exceeds the characteristic time of changing of external
forces A, because in this case we may neglect the creep of material during the transition
process.

5. THERMODYNAMIC INEQUALITIES IN LINEAR VISCOELASTICITY

Let us consider the adiabatic loading of a nonhomogeneous, aging, viscoelastic body.
Writing the First Law of thermodynamics in differential form we have
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&(n = J;pF(t)'u'(t) de+ fr S0 u' (1) ds. (26)
From (15). (16) and (26) it follows that for the process 8(z), u(r. 3):
A (1) = LPF(I)'N'(I) de+ J;ﬂl)'tf(f) ds— W"(1). (27
Using (6) and (12) we have

W(n = f a(r): () dv+ S(1).
a
aQ . e “eQ . o~
S(¢) =J‘; [E[—(!-—t L =tNe(t):e(t)+ ) :-—3’ @t([—r LT—Tt*)e(r)
—(’(t))Z((’(!)—-(’(t))dt]dl'. (28)

Substitute these relations into the identity (27). With the help of (1), (10). (11) and
Stokes’ formula we find

o (1) = - S(1). (29)

For adiabatic loading the Sccond Law of thermodynamics says that the entropy of the
body increases monotonously. Thus from (29) it follows that

oQ 0°Q

"""" (tL1)<0, ——(@1)<0, 0<<g). (30)
ot ot

Relations (3) and (30) are the system of thermodynamic inequalities, which guarantee
the correctness of the model for a viscoelastic medium.

For the aging clastic body (Q(t, t) = 0) incqualities (30) hold. For a nonaging visco-
elastic material (G = const, Q = Q,(r—1)) these inequalitics may be written in the form
Q1) €0, Qs (1) = 0. Analogous conditions have been formulated by Dafermos (1970a.b).

6. FIRST-ORDER PHASE TRANSITIONS IN AGING VISCOELASTIC BODIES

Dcnote by @, the temperature of the phase transition when the body and the surface
forces are equal to zero. The body is in its natural state at the temperature 0, and occupies
the domain Q. The material is in two phases, the substance in the ith phase occupics the
domain Q,(0). At the moment ¢ = 0, body and surface forces are applied to the body. Duc
to their influcnce the substance in the first phase develops into the second phasc. We assume
that inverse phase transition is not realized. At the moment ¢ > 0 matcrial in the ith phase
occupies the connected domain ,(¢). The domains ©,(¢) arc divided by the smooth surface
7(1). We assume that y(7) does not cross the surface I' and the domain Q.(1) lies in Q,(¢).
The behavior of the material in the ith phase before the phase transition is described by the
constitutive equations of an homogencous. aging. viscoelastic medium with constant bulk
modulus K, current shear modulus G,(¢) and relaxation measure Q,(. t). According to (2)
the free energy per unit mass of material in the ith phase W(¢) is equal to

SAS 29:6-1
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Wo=W,+ W, —Ho(0—8,)~c(0-0,) (20,).

. (" ¢R,
p”',=§K.5'(ﬂ+G,(:)[R,(x.())e(t):e{f}+ ({fr»f(f.:)(e(t)-e{tn:tcm—e(:))dr]. (31

)

where W, and H,, are the free energy and entropy per unit mass of the material in the ith
phase in its natural configuration at the temperature 4, ¢, is the heat capacity per unit mass.
The constitutive equations of the material can be written in the form

Pt

&)y = 3K:E(n, s{t) = 26,(1)[9(1)— J %,% (t. D)e(r) dr] (32)
{ 8

}

where ¢, =0,: L s, = g,— !5,1.
We propose the following expression for the free energy per unit mass of the substance
in the second phase after the phase transformation

Vo= Wyt W= Hag(0—0,) ~c2(0—00)°,20,).

i

Hl

pW(D) éz’\'z(;?(t)—~£*):+(12(t—r*)[[{z(l——r*‘())((’(t)-—c*):(c(f)-<'*}

AR, ;
+ o (I~ v—r ey =t (e —efr)) dr f. (33)

where &, =6, Le, =6, — 45,1

Here e, = ¢, (7,) is the strain tensor, which describes the deformation of the reference
configuration into the natural configuration of the material in the second phase after the
phase transition] t, = () is the time when the phase transition occurs in the neigh-
bourhood of the point £,

According to Arutyunyan ef a¢l. (1987) the constitutive equations of the material in
the sccond phase after the phase transformation have the form

(;3([) =4 3[\’:(}?({)“5*),

5:(t) = ZGg(t—r*)[(tl(z)m(:*)..J L'{Q

i (I«r*,r-—r,){v(r)—c*)dr]. (34)

Equalitics (32) and (34) may be written as

cH
=g 35
aln=r 1) (33

For first-order phase transitions the free energy per unit mass in the natural state is
continuous: ¥, = W,, and the derivatives of the free energy have finite jumps (Landau
and Lifshitz, 1976). For isotropic phasc transformations the jump of the density is deter-
mined by the lincar coeflicient of compression £ and the jump of entropy is given by the
latent heat of the planc transition p: Hyy = H o+ pully .

Suppose that the body element, which was in equilibrium before the phase trans-
formation under the action of external forces, is in equilibrium under the action of the same
forces after the transformation and phase deformation occur:

ai(t,) =0,(t,). & (r,) =8 (r,)—34e:(1,) = ci(1,).
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An analogous assumption was proposed in Alts and Strahlow (1984) for the cooling
process in glass and in Arutyunyan and Drozdov (1985) for the phase transition in elastic
and viscoelastic media.

From this hypothesis and (32) and (34) we obtain

K
£, = (1 - F:)El(r,)—y.,

(. Gz Gi(ry) [ 2R,
e*—(l—- G;(O))e'(t‘)+ G.0) )y et (t,.7)e (1) dr.

At G.(0) # 0 these equalities define the natural configuration of the body element in
the second phase. The identity G,(0) = 0 characterizes an elastic liquid (Lurie, 1980). for
which all configurations with different shifts are equivalent.

The problem is comprised of the determination of the interface y(¢), the stress field o(¢)
and the displacement field u(f) when the body and surface forces and the heat exchange
conditions on the boundary are given. [n the case when large temperature gradients appear
in the body (due to the heat exchange). the position of the interface may be found from the
solution of the Stephan problem for the heat equation. Afterwards the stress and dis-
placement ficlds are obtained by solving the contact problem. In the case when the tem-
perature gradients are small enough the mechanical stresses have the essential influence on
the phase transition and we need an additional condition to determine the interface.

7. VARIATIONAL PRINCIPLES IN VISCOELASTICITY WHICH ACCOUNT
FOR PHASE TRANSITIONS

We first deal with the isothermal loading when the body temperature is constant and
equal to #,. Fix the moment ¢ 2 0 and the deformation history {y(r), u(1,£). (0 € © < 1)}
Denote by U, (#) the set of smooth surfaces y°(1), which lie in Q and divide this domain into
connected subdomains Q'(¢), and displacement fields #°(¢, &), which are continuous in Q,
continuously differentiable in Q'(s) and which have finite jumps of derivatives across the
surface y°(¢). Choose an admissible element (7°(r), u°(¢, £)) € U, (1). According to Roitburd
(1971). we assume that the free energy and entropy of the interface can be neglected.

We formulate the following principle of minimum free energy of a system:

The real interface y(¢) and the real displacement field (¢, £) minimize the function

E() = ‘P(!)—A(l) = p¥,IQ + W(t)—A(t). W(I) = j pW, (1) dv+ J: pW,y(t) dv
00 19(1)
(36)

on the set U _(1).

Consider the variation of the surface y(¢) at which the domain Q,(1) transforms into
Q(1). We assume that this transformation is described by the formula r* = r+dw, where r,
r’ are the radius vectors of points in the reference and in the perturbed configurations. The
function dw(s, &) is continuous in Q and continuously differentiably in Q,(¢). It has finite
jumps across y(¢) and vanishes on . Denote by du(s, &) the variation of the function
u(1,£). The complete variation of the displacement field u(s, &) is given by du(r) = dou-
(4w (0) Vu(r). If [Vu(r)| « 1, then it may be shown that the complete variation of the
strain field (¢, {) is defined by the equality de(r) = oe(2) +ow(t) + Ve(t). where dqe(1) is
connected with d,u(f) by (1).

From (1) and Stoke’s formula it follows that
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. . 4
OL Vie(r) dv = 'LN'}—(SU))WSNU) ds— J‘ n(t)
) € (1)
eV 1%
-{[V(s(t))]—- = ) Vur(t)]'éw(l)+ Ca—e(a(t)) : éu(l)} ds

¢V 3
- L (V . . (e(t))) - (Qu(t) —-VuT (1) dw())de  (37)
(1)

for any sufficiently smooth function V(¢). Here n(z) is the unit normal to y(r) pointing into
Q,(1). An analogous formula can be derived for

é L V(e(?)) de.
(0

Using (8). (35)-(37), we find

SE(N) = J (N>a,()=f(1)- ou(t) ds+ j n(0)- {{p(Wr(— W ()]
T

7(6)

— (o, (1) Vui(t) —a (1) VU ()] ow() + (a,(t) ~ 0, (1)) - ou(t)} ds

—J(V'd(!)+pF(t))'((514(!)——thT(l)'<5u'(l))dl‘. (38)
1

From (38), the principle of minimum free energy and the arbitrariness in choice of
du(t), ow(t) we obtain the equilibrium equation (10), the boundary condition (11), the
boundary condition on the interface y(1)

n(0)o,(1) = n()-a,(1), (S€7(1) (39
and the energy ratio on the surface y(r)
plW2 ()= W\ (Dln(1) = n())[02(0) Vel (D —a, (1) VT (D), (Eey(n).
According to Berdichevskii (1983a), one can show that this identity reduces to
pIW ()~ W\ (D] = n(1) o (1) [Vul () = VuT (D) - (1),  (Eey(n)). (40)
Let us now consider the case of adiabatic loading, when there is no heat flow across
the surface of the body. For simplicity we assume that the heat capacity does not change
during phase transition: ¢, = ¢, = ¢. Fix the moment ¢ > 0 and the deformation history
{0(0), (1), (1, ), (0 < t < 1)}. Denote by B_(r) the set of admissible temperature values
0"(r), admissible interfaces y°(r) and admissible displacement fields u°(s. ¢). Choose the
element (0°(1), °(0), u’(t, &) € B, (1). The internal energy and the entropy of the body are
given by
(1) = pl(¥ 10+ H000) +c((0°(0)* = 03)/(20,))1Q1 + p Q3 (D) + W (1),
H(t) = p[H o+ c(0°(1) —00)/0)1Q1 + ppulQ3(1)1/6,,

Q) = J de. 1)
0P

We propose the following formulation of Gibbs’ principle :
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The real temperature 6(z), the real interface y(¢) and the real displacement field u(s, {)
maximize the entropy H(f) of the body on the subset of B, (), whose elements satisfy the

conservation law of energy (17).
From (17), (36) and (41) it follows that

200 12
6(n=0_(n {1 + m[(ﬂ () - E()— pu(1Q:()] - IQz-(l)l)]} . (42)
According to Stoke's formula we have
0l (0)} =I n(t) - dw(t) ds.
7ie)

Using this relation and (41), (42) we find

0(N6H (1) = pu

9(‘2)“ ) J; n(t)- ow(t) ds— SE(1). (43)
1] (0

From (38). (43) and Gibbs' principle we obtain the equilibrium equation (10), the
boundary conditions (11), (39) and the energy condition on the interface

o0,
o "2 (1) = 20~ WAl =)0 () [V = VT, (EE3(0). ()

This relation reduces to the scalar equality
P --”0:—* = p[W ()= W, (D] =n(1)* o(1) [Vu() = Vul(D] - n(r), (Eey(t)). (45)

We now calculate the time derivatives of the internal energy and the entropy of the
body. According to (41) we get

B°(1) = pcd(D0"(DIQU/8o + pulQ ()" + W' (1),
A'(1) = plc0" (1)1 + uIQ ()] ]/6,. (46)

Let us suppose that during the time Ar the domain Q,(¢) transforms into Q,(¢t+Ar). We
assume that this transformation is described by the equation r’ = r+ Aw, where the function
Aw(t, &) has the same properties as dw(t, £). Denote by w'(¢) the limit of the ratio Aw(1)/At
as At — 0. Similarly to (38) we obtain

w(r) = J;N' o\ (1) u' (1) ds+ L’n(l)’ {lp(Wo)— W\ ()
~(0:(0) Vui() =0, ()" Vil (D] W' () + (02(1) — 0, () "' (1)} ds

- J; (Vo(0): ('(O)~Vu"(O)-w' (1)) dv+S(1), (47)

where () is the complete derivative of u(r) and S(¢) is defined by the formuia
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Sy = [ [ Q.
J0 ct

+ [ [g;_gi(t.O)e(t):e(t)+J Q (t.t)(e(r) —e(1)) : (e(t)—e(T)) dt :l
Q.

t : Q
e =2 (L o)(e(t) —e(n) : (e(t) —e(T)) de

ct o ér T

cQ:
+ —=(t—1,.0)(e(r)—e,) {e()—e,)
JEAD M

«?

4 (‘.ZQ
+J s (U=, 1T ) (e() —e(T): (e(!)——e(r))dr:l

ctct

From (46). (47). the First Law of thermodynamics (26) and equalities (10). (11), (39)
and (44) it follows that

NOH () = —S(). (48)

Equality (48) denotes the Second Law of thermodynamics for a viscoelastic medium at
adiabatic phase transitions. Relations (10). (11). (32), (34). (39), (45) and (48) are the
complete system of equations for the description of the stresses in a viscoelastic body. For
the aging clastic medium S(0) = 0 and from (41), (43) and (48) we get

i 1QL (02, (0)] ) . . ., .
o, Q) = p(W ()= WD =n(t) - a(0) [Vui () =Vl (D] n(r). (Sex(0).  (49)

Equation (49) defines the interface position at adiabatic phase transitions in the aging
clastic body. In the case when the latent heat of trunsformation is neglected (g — 0) or
when the dimensions of the domain, which the substance occupies in the new phase, are
essentilly less than the dimensions of the body (1€2,(4)/€2,(D)|/1€2| — 0) this equation reduces
to (40).

8. DEVELOPMENT OF A NUCLEUS OF MELT IN AN AGING VISCOELASTIC MEDIUM

Consider the melting of a viscoclastic body at isothermal loading. The body is heated
to the phase transition temperature 6, and is in its natural state. At the first stage the
melting process consists of the growth of liquid phase nuclel. If the number of nuclei is not
too large and their mutual influence is neglected we may study the development of an
isolated liquid phase nucleus in an infinite medium. Assume that the nucleus occupies the
spherical domain with radius «¢,. Introduce the spherical system of coordinates (r, 8, @),
which origin lies in the centre of the sphere. At the moment ¢ = 0 the pressure ¢ = () 13
applied to the medium at infinity, (¢(0) = 0, ¢'(£) > 0). Under the action of the external
load dimensions of the nucleus increase. Denote by a(r) the nucleus radius at the moment
t20.

For simplicity we consider the growth of the nucleus in the incompressible viscoelastic
medium. The creation of a nucleus of solid phase in a compressible elastic body and the
stability of this nucleus was studied in Johnson and Voorhees (1987) and Strehlow (1988).

Suppose that the behaviour of the material in the solid phase is governed by the
constitutive equations of an incompressible homogeneous aging viscoelastic body

t jR
pW (1) = G(l)[R(I. Oe(r):e(t)+ J. %{ (1, t)(e(t) —e(T)): (e(t) —e(T)) dr] ,

" OR
gty = =3pt), s(1) = 26(()[e(t)—- Jn A (1, t)e(r) dr:|.

&N =0, (alt) <r< 0. (50)



Phase transitions in nonhomogeneous, aging. viscoelastic bodies 795
where p is the pressure. The mechanical behaviour of material in liquid phase obeys the
constitutive laws of an incompressible elastic fluid

P =0. 6()= =3p(n). s()=0, &nN=0. (0<r<ap):
&)= =34 (ay <r<a()). (51)
We obtain expressions (50) and (51) in the limit of (31)}-(34) as K. K, — x.

Denote by u(«. r) the radial displacement of the body points. Write the incompressibility
conditions as

WH2ur-' =0, O<r<apat)<r<x); w+lur'=—-34i (aq<r< a(1)).
where &’ = cujor.
Integrate these equations by r. From the identity of the radial displacement at r = q,

and r = a(r) we get

u=0, 0<r<ay); u=uag—=r’yr >, (as<r<a():

u=ilay—a’(Nr-:,. (at) £r < x). (52)

Substitute these expressions into (50) and (51) and find the physical components of
the stress tensor o

g, =a,=0,=—p(t), (0<r<u(t)):
6, = —p()=4iLl(t)r ', o, =0a,= —p()+2:L(1)r ., (a(t) <r < ).
. 3 v ‘R 3 3
L) = G| (ay—a' (1) - PR (t.t)(ay—a (r))de |. (53)
0

Integrate the equilibrium equation 6+ 2(a, —a,)r ~' = 0 with respect to r from a() to

infinity. Using (53) and the boundary condition ¢,(1, ) = —¢(t), we have
a,(t.at)) = —q(1)—4AL(0a (1), (54)

Substitute (50)-(52), (54) into (40)

NS

?(1, e () —a'(1))? dr:l

o~

1
0

oG(1)i‘a "(I)[R(t.0)((1“(1)—03)3+f

! ﬂR
= —3i {q(l)—‘l(;(l)i.u 3 [(a"(l)—a.’}) - j %t-(!, ) (a* (1) —al) dr]}.
0
Introducing the dimensionless  values G (1) = G(1)/G(0), q,.(t) = q(/(2G(0)4),
a,(t) = a(t)/ay, =(t) = ay(1), we write this equation in the following form

w07, - R
[l— G*([)]-(’) = R(’.O)—J ‘0;(1. t)-(f)df. (55)

0

Equation (55) is a lincar Volterra equation for the function z(r). After solving this
equation we find the interface radius from the identity a(r) = a,z" *(t) and the displacements
and stresses from (52) and (53).

For a nonaging clastic medium (G = const. R(¢, 1) = 1) we obtain
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2D =[1—q().2GH] . (56)

According to (36) the dimensions of the nucleus of the melt increase as the pressure
grows and tend to infinity as ¢(¢) approaches 2G ..

For an aging elastic medium (G = G(1). Q(t. 1) = 0) equality (33) reduces to the ordi-
nary differential equation [G, () ~ ¢, (0)]=" = ¢, (1)z. 2(0) = 1. The solution of this equation
s

(= exp{ [ ¢(OR2G) -] ! dr}. (37)

From (57) it follows that the material aging causes the diminution of the dimensions
of the nucleus. Note that the radius of the nucleus depends on the loading history. A
discussion of this phenomenon can be found in Gorokh and Arkharov (1989).

Consider the standard viscoelastic body (Arutyunyan and Kolmanovskii. 1983) whose
behaviour is governed by the equation s"+7s = 2(Ge +7G ), where G and G, are the
current and the limit shear modulus, 7 ' is the characteristic time of relaxation. Equation
(53) reduces to the differential equation

=g D) =g, (D+q (O —Klz+r, z(0)=1. (=d/de 0, =708 = G,/G < ).

Suppose that the pressure tends towards the limit value ¢" and the characteristic time
ol change of the external forees is essentially less than the characteristic time of relaxation.
In this case we may regard ¢, as a constant, which is equal to ¢ = ¢"/(2G4). The limit
value ol z(1) as - « 1s defined by

== G (58)

From (56) and (58) it tollows that at constant toad the limit radius of the nucleus of
the melt in a viscoclastic medium coincides with the radius of the nucleus i an clastic
medium, whose shear modulus is equal to the limit shear modulus of a viscoclastic material.

I ¢" satisfies the incquality 2G4 < ¢° < 2G4, then the dimensions of the nucleus in
an clastic medium stay finite and the radius of the nucleus in a viscoclastic medium tends
to infinity as ¢ = s .

The characteristic time tor establishing thermodynamic equilibrium at the melting of
viscoelastic body 7= (1 —¢3)[(x —¢)] ' depends on the intensity of pressure and tends
to infinity as ¢" approaches the critical value 2G 4.
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