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Abstract-We proposc a thermodynamic model for a heterogeneous. aging. viscoelastic medium at
inlinitesimal strains and analyze the main thermodynamic potentials. We find the conditions for
the rcla~ation measure. which guarantee the Second law of thermodynamics to be satisfied.
Variational principles for viscoelastic bodies at isothermal and ildiabatic loading arc formulated.
The energy ratios for the determination of the interl;lce at the philse transition arc derived. We
ilnalyze the local melting process in the viscoelilstic body at isothermal loading ilnd study the
rh.:ology intlu.:nce on th.: development of a spherical liquid phase nucleus.

I. INTRODUCTION

This paper is devoted to the construction of thermodynamic potentials in the linear visco
elasticity of aging media. We need a thermodynamic model to study (I) the stability of the
body, (2) the displacement of the interface during phase transitions in solids. (3) the extension
of cracks in the medium and (4) the numerical analysis of the stress fields. The thermo
dynamics of materials with memory at finite strains was investigated by Coleman (1964).
Trapeznikov (I <J78) proposed a thermodynamic model of .In aging viscoelastic medium.
Another approach to this problem was developed by Arutyunyan £'( al. (1987). The defed
of these potentials is the necessity to introduce supplementary time-dependent fundions or
free-energy kernels, which are dif1icult to examine experimentally. The expressions for the
free energy of nonaging viscoelastic medi'l were considered by Dafermos (1970a.b).

In the second part of the paper we formulate the variational principles for viscoelastic
media at isothermal and adiabatic loading. Our formulations arc dilferent from the standard
variational pril1l:iples in elasticity (Landau and Lifshitz, 1976; Berdichevskii, 191041) and
viscoelasticity (Rabotnov, 1979) because we consider the complete deformation process
and not just the initial and final st,ltes of the system. Then we discuss the connection between
introduced variational principles and the phenomenological approach based on the concept
of "availability criteria" (Alts and Strehlow, 1984; Strehlow, 1988). We show that the
equilibrium equation and the stress boundary condition can be deduced from these vari
ational principles. Moreover. using the variational principles we obtain the energy ratio on
the interface at the first-order phase transitions in a viscoelastic medium. The interface
conditions for the phase transformation in an clastic body at infinitesimal strains were
found by Roitburd (1971). The phase transitions in clastic bodies at finite strains have been
studied by Grinfel'd (1980), Gurtin (1983), Kondaurov and Nikitin (1983) and Fonseca
( 1987).

In the third part of this paper we apply the obtained results to the problem of local
melting. We analyze the growth of the spherical liquid nucleus in aging viscoelastic media
at isothermal loading. The aging inOuence on the growth of the nucleus is analyzed. The
creation of a spherical nucleus in clastic media has been considered by Lifshitz and Gulida
(1952). Another approach to this problem was proposed by Johnson and Voorhees (1987).
The creation of an ellipsoidal nucleus of melt in an elastic body was investigated by
Berdichevskii (1983b). The techniques used in these papers are founded on the hypothesis
that the nuclei are generated instantaneously and cannot describe the growth of these nuclei.
The growth of nuclei in viscoelastic bodies during phase transformation was studied by
Arutyunyan and Drozdov (1985).
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, THER\IOD'rS·\\IIC POTE:-;TIALS FOR AGI:-;G V1SCOEL\STIC \lEDL\

The body is in its natural state at temperature () = II" and occupies the connected
domain Q with the smooth boundary r. Let us introduce the coordinate system ~ = (~, ) in
the dlymain Q. At the moment T = 0 body forces F(T, ~) and surface forcesf(T, ~) are applied
to the body. We negkct the inertia forces and assume that the strains are infinitesimal. We
denote the displacement vector by U(T, ~) and the corresponding strain tensor by 1:([, ~).

I: = (V'II+vu') 2. (I)

The mechanical behaviour of the material obeys the constitutive la\\s of the '1!.!ln!!
homogeneous and isotropic, linear viscoelastic body with elastic dilatation. We suppose
that the thermal c"pansion Gin be negkcted and write the following e"pressions for the free
energy per unit mass tfJ

\{J = tfJ o+lI"-ff,,(I)-Uo)-e(O-(}0)c/(200),

pll"(T) = ~A.·i:C(ll+G(l{R(l,Ok(l):{'(l)+ L1;:(l,r)(c(r)-dr)):(c(T)-dr))dr].

i:=I::/. 1'=I:-\i:I, R(T,r)=G '(I)[(i(rl+Q(l,r)j.

where \1/", /I" are the free energy and entropy per unit mass in the naturall.:()(Jliguration at
the temperature 0 0 , /) is the mass density, II" denotes the mechanical energy per unit mass,
e > 0 is the heat capacity per unit mass, 1\ > 0 is the constant hulk modulus, G(l) > () is
the current shear modulus. QU, r) is the relaxation measure. 1 is the unit tensor. We omit
the argument ~ for shortening.

Expressions for the relaxation measures of some viscoelastic materials are represented
in Arulyutyan and Kolmanovskii (1')83). The function RU, r) is continuously ditlcrentiahlc
and satisfies the conditions:

RU.l) = I, R(t. r) ;?!: 0,
aR
, (T. r) ;?!: O.
('r

(0 ~ r ~ I). (3)

Identity (3) ddines the norm of the relaxation measure and is accepted here for
convenience. The inequalities (3) guarantee the convexity of the specifie mechanical energy
in the natural cl)nliguration.

Equality (2) is the Taylor expansion of the specific free energy \{J when third order
terms an.: negkcted [see for example. Arutyunyan elal. (1')87)].

The entropy per unit mass 1/ = - (~\{J /I~U is given by the formula :

(4)

The internal energy II> per unit mass is cakulated using the formula <I> = 'I' + /10. With

the aid of (2) and (4) we obtain

(5)

Consider a heterogeneous, aging body, in which dilTcrent dements arc created at
ditlcrent moments of time [sec Arutyunyan and Kolmanovskii (191\3 )]. Denote by r*( ~) ~ 0
the time when the material element is generated in the neighbourhood of the point ~. We
write the following expression for the specific mechanical energy of a nonhomogeneous.

aging. viscoelastic medium:
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I,cR ]+ -:;-(t-t*, t-t*)(e(t)-e(r»: (e(t)-e(r» dr . (6)
o cr

3. VARIATIONAL PRI~CIPLES I~ THE THEORY OF VISCOELASTICln'

Usually two types of loading processes are considered: isothermal and adiabatic
loading. We first deal with the isothermal case, when the body temperature is constant and
equal to 0". Let the time t ~ 0 and the deformation history {u(r. ~). (0 ~ r ~ t)l· be fixed.
Denote by U(t) the set of displacement fields I/(t. ~). which are continuously ditferentiable
in n. Choose an admissible field u°(t. ~) E U(t) and a corresponding strain field /;"(t. ~). Here
and below we denote by the symbol with index "0" any admissible value of thermodynamic
quantity. The value of such a quantity. which is realized in the loading process is denoted
hy the same symbol without index "0".

From (2) and (6) it follows that Helmholtz free energy of the body is equal to

'T'(t) = rp'I-'(t) dl' = p'I-'"lnl+ W(t),JlI Inl = r dr,JlI

where dr is a volume element and lh is a surl~tce elemcnt.
Deline the work of external forces by thc formula

(7)

A (t) = A (t)+ rpF(t)· (I/I(t) - u _(t» de + rJ(t). (u"(t) - u_ (t» ds, (8)11 Jr

where symbol .L (t) dcnotes the limit of the function X(r) as r -> t- O.
By virtuc of Lurie (1980). the free energy of the system E is defined by

E(t) = 'fl(t)-A(t).

Now we may postulate the principle of minimum free energy of a system:
The real displacement field u(t. ~) minimizes the functional E(t) on the set U(t).
We will show that the equilibrium equation

V' a(t)+ pF(t) = 0

;tnd the boundary condition on the surface r

N'(1(t) =J(t), (~Er)

(9)

(10)

(II)

follow from this principle using the constitutive laws of a nonhomogeneous viscoelastic
media
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a(t) = 3Ki:(t), s(l) = 2GU-t*)[e(/)- f' (~R(/_t*,t r*)e(r)dr]. (12)
n cr

Here N is the outward unit normal vector to r, a(t,';) is the stress tensor, ii = a: I,
s = a- !iil.

Proof. let the admissible variation of the displacement vector be ()u(t,';) and the
corresponding variation of the strain tensor be &(t, ¢). The variation of the function E(t)
is equal to

j'[ cR ] }+ -{-(t-t*,r-t*)(c(t)-e(r»dr : Je(t) dr
II (t

-LpF(t), Ju(!) dr - Jj(t)' Ju(!) ds.

From this equality, (3) and (12) it follows that

I)E(t) = r [a(/): &(t) - pF(t) 'I)U(t)/ dl' - ( J{t)' ()u(t) ds.
Jll J

Using (I). (13) and Stoke's formula we obtain

( 13)

liJ:"(!) = -- J' [V'a(t)+pF(t)/'I)u(t)dr+ ([N'a(/)-/(t)I'()u(t)ds. (14)
II Jr

lienee the equalities (10) and (II) follow from (14) as necessary conditions of being a
minimum of the function E(t) because of the arbitrariness of the field ()u(t, ¢).

Now we consider adiabatic loading, i.e. the heat now to the body vanishes. In addition
we assume that the characteristic time for changing the external forces and the characteristic
time for relaxing the stresses exceed the characteristic time which is necessary to establish
thermodynamic equilibrium. In this case the body is in the thermodynamic equilibrium
state at any t ~ 0 and the temperature 0 does not depend on the coordinates.

Let the time I ~ 0 and the deformation history {O( r), u( t, ~), (0 ~ t < t): be fixed.
Denote by 0(t) the set of admissible temperature values O"(t) ~ O. Let B(t) = 0(/) x U(t).
Choose an admissible element «(JII(t), I/'(t, ¢» E 8(1). The internal energy of the body <1">U)
and the entropy of the body H(t) arc equal to

( 15)

( 16)

The First Law of thermodynamics implies

( 17)

We postulate Gibbs' principle:

The real displacement field 11(/, ¢) and the real temperature O(t) maximize the entropy
of the body fill) on the subset B(t), whose clements obey the conservation of energy (17).

Substituting (15) in (17) and using (9) we get
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This equality and (16) yield

7S7

(18)

According to (18) the displacement field 1I(t. ~). which maximizes the entropy of the
body fi(/) minimizes the free energy of the system £(1). With the aid of (14) and (18) we
discover that Gibbs' principle implies the equilibrium equation (10) in n and the boundary
condition (II) on the surface r.

4. GIBBS' PRINCIPLE AND THE SECOND LAW OF THERMODYNAMICS

Let us consider the adiabatic loading of an elastic body (G(t) = G = const. Q(/. ,) = 0)
at time interval [0. T]. Divide this interval by points I. = kfJ.• .1 = T/ N. k = O. I..... N.
Introduce the piecewise constant external forces F.v(l. ~). fdt. ~) using the formulae

Suppose that there exists a constant ("I > 0 such tlwt for any k ~ 0

( 19)

where

IIF(t)lIl~ =i F(t. e)· F(/. 0 dl'.
II

Denote by Ii.v(t.') the displacement field corresponding to the forces F.v(t. e). j~(t.').
One can show that according to (19) there exists a constant c > 0 such that for any

/E[O.71

(20)

Suppose that at time I k -0 the body is in thermodynamic equilibrium under the action
of the forces F(/k _I. e). !(tk _I. O. This state is characterized by the displacement field
U,V(/b ,) and the temperature O",(lk)' During the piecewise constant loading process the
forces F(tbe) and/(lk .') are applied to the body at the moment Ik • Under the action of
these forces the body leaves the equilibrium state. We assume that the body tends to move
to another equilibrium state and that the characteristic time of the transition process 'k is
proportional to the intensity of the change in the external forces

(21 )

Here the constant C2 > 0 depends on the mechanical properties of the material and the
dimensions of the domain n only.

The loading process is called a continuous one if the characteristic time of the external
forces changing exceeds the time which is necessary to establish thermodynamic equilibrium
in the body:
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(22)

From (19) and (21) it follows that the estimate (22) may be written as c\c! < 1. This
inequality is a restriction only on the rate of change in the external load.

According to (22) under the piecewise constant loading process at the moment tiH- 1-0
the body is in a thermodynamic state of equilibrium which is characterized by the dis
placement field u",(tiH- \, ~) and the temperature (}.v(tk+ \).

Writing the equation of balance of energy and the Second Law of thermodynamics for
the adiabatic loading process and by virtue of Strehlow (1988) we neglect the kinetic energy
of the body to get

fi"(t) ~ o.

Integrating (23) from t. to te[t., tk+ I) we find

(23)

(24)

From (24) it follows that the entropy of the hody fi(t) does not decrease in time.
Hence, at the moment tk+ I the function fi(t) has its maximum value on the set of the
displacement fields uN(t, 0 and the temperature fields O,,(t, 0, which ,Ire realized during the
transition process and satisfy eqn (25).

According to Gibbs' principle, at the moment t• • I the function l7(t) has its maximum
value on the set of admissible displacement fields uoU. , 1.0 and temperature fields O°(t•• I).
which satisfy (25) at t = t•• \.

Note that Gibbs' principle does not follow from the Second Law of thermodynamics
and vice versa. By the variational principle we find a maximum value of the function I/(t)

on the set of any admissible displacement field u°(t• • \. O. whieh may be wider than the
set of displacement fields realized during the transition process. On the other hand the
heterogeneous temperature fields O",(t, 0 may be realized during the transition process, but
by formulating Gibbs' principle we consider the homogeneous temperature fields O°(t. + \)

only.
We note the analogy between these assertions and the ergodic property of stochastic

processes. By virtue of Gikhman and Skorokhod (1977), the stationary st0chastic process
is called ergodic if its mean value in time coincides with its mean value on the set of
realizations. The Second Law of thermodynamics says that the entropy of the body has its
maximum value in time at the interval [tb t.+ \) at a final equilibrium state. Gibbs' principle
says that the real equilibrium state maximizes the entropy of the body on the set of
admissible equilibrium states. Equivalence of these assertions means that nonequilibrium
transition processes have the ergodic property [see Landau and Lifshitz (1976)].

By (20) we may proceed to the limit as N -+ 00 and get Gibbs' principle formulated in
Section 2 for the continuous loading processes in elastic bodies. Existence of viscosity in
the material does not change our formulation of Gibbs' principle if we suppose that the
characteristic time of relaxation exceeds the characteristic time of changing of external
forces Ll, because in this case we may neglect the creep of material during the transition
process.

5. THERMODYNAMIC INEQUALITIES IN LINEAR VISCOELASTICITY

Let us consider the adiabatic loading of a nonhomogeneous. aging. viscoelastic body.
Writing the First Law of thermodynamics in differential form we have
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(26)

From (15). (16) and (26) it follows that for the process O(t). u(t. ~):

(27)

Using (6) and (12) we have

rJ"(t) =i a{t): E'(f) dl'+S(t).

i [iJQ i' c~QSet) = T (t - r .... - r"'k(t): e(t) + ~ (t - r .... r - r'" )(e(t)
n d 0 (f tr

-c(r»: (c(1) -e(r» dr}It'. (2X)

Substitute these relations into the identity (27). With the help of (I). (10). (II) and
Stokes' formula we find

O(f)/7'(t) = -S(t). (29)

For adiabatic loading the Second Law of thermodynamics says that the entropy of the
body increases monotonously. Thus from (29) it follows that

DQ
-.-' .. (t r) :< 0Df • ......

()~Q

;;:;- (f, r) ~ O. (O ~ r ~ t).
vt ()!

(30)

Relations (3) and (30) are the system of thermodynamic inequalities. which guarantee
the correctness of the model for a viscoelastic medium.

For the aging clastic body (Q(t. r) = 0) inequalities (3D) hold. For a nonaging visco
elastic material (G = const. Q = Qo(t - r» these inequalities may be written in the form
Q,;U) ~ o. Q,;'(t) ~ O. Analogous conditions have been formulated by Dafermos (llJ70a.bl.

6. FIRST·ORDER PIIASE TRANSITIONS IN AGING VISCOELASTIC BODIES

Denote by 00 the temperature of the phase transition when the body and the surface
forces are equal to zero. The body is in its natural state at the temperature Oil and occupies
the domain n. The material is in two phases. the substance in the ith phase occupies the
domain n,(O). At the moment f = O. body and surface forces are applied to the body. Due
to their intluence the substance in the first phase develops into the second phase. We assume
that inverse phase transition is not realized. At the moment t ~ 0 material in the ith phase
occupies the connected domain n,(t). The domains n,(t) are divided by the smooth surface
y{f). We assume that y{t) docs not cross the surface r and the domain n~(t) lies in nl(t).
The behavior of the material in the ith phase before the phase transition is described by the
constitutive equations of an homogeneous. aging. viscoelastic medium with constant bulk
modulus Kj • current shear modulus G,(t) and relaxation measure Q,(t. r). According to (2)
the free energy per unit mass of material in the ith phase 'fli{t) is equal to

SAS 29:6-1
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'P, = 'P/o+ W,-H,o(O-Oo)-c,(O-Oo)C (200).

pW, = ~K,EC(tl+G,(t)[R,(t.O)e(t): e(t)+ I' i!, (t. r)(t'(t)-t'{r»: leU) -e(r) dr]. (31)
~') (r

where 'P,o and H to are the free energy and entropy per unit mass of the material in the ith
phase in its natural configuration at the temperature iJo. c, is the heat capacity per unit mass.

The constitutive equations of the material can be written in the form

8/(t):::: 3Kj E(t). s,(t):::: 2G,(t)[e(t)- j~' (~~~(t,r)e(r)drJ,
o fr

(32)

where ii, :::: (T,: I. s, = (Ti - .\1rJ.
We propose the following expression for the free energy per unit mass of the substance

in the second phase after the phase transformation

'Pc == 'P cll + Wc -f[co(ll-()Il) cc(fJ-Oll h(2tJll ).

pJV:(t) == !Kc({(t)-{.)C +Gc(t- r.{Rc(t - r •. O)(eU)-c.): (c(t) -('.)

(33)

where i:. :::: I:. : I. ('. = 1:. - !i:.l.
lien: I:. == 1:.( r.) is the strain tl:nsor. which describes the deformation of the reference

configuration into the natural conliguration of the material in the second phase after the
phase transition; <. = r.(~) is the time when the phase transition occurs in the neigh
bourhood of the point ~.

According to Arutyunyan ct al. (19X7) the constitutive equations of thl: matl:rial in
the second phase aftl:r the phase transformation have the form

lic(t):::: 3Kc(E(t)-E.),

[ I DR, ]
sc(t):::: 2G~(t-r.) (c(t)-e.)- ,.- (t-r•. r-r.)(c(r)-e.) dr .

. t. cr

Equalities (32) and (34) may be written as

(34)

(35)

For first-order phase tranSitions the frel: energy per unit mass in thl: natural st.lte is
continuous: 'P 10 = 'fl ~o and the derivatives of thl: free energy havc finite jumps (Landau
and Lifshitz. 1976). For isotropic phase transformations the jump of the density is deter
mincd by the linc,lr coclllcient of compression i. and the jump of entropy is given by the
latent heat of the plane transition Jt: /1 20 = 11 10 + IlOn I,

Suppose that the body clement. which was in equilibrium before the phase trans
formation under the action ofexternal forces, is in equilibrium under thc action of the same
forces after the transformation and phase deformation occur:
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An analogous assumption was proposed in Alts and Strahlow (1984) for the cooling
process in glass and in Arutyunyan and Drozdov (1985) for the phase transition in elastic
and viscoelastic media.

From this hypothesis and (32) and (34) we obtain

At G 2(0) #: 0 these equalities define the natural configuration of the body element in
the second phase. The identity G 2(0) = 0 characterizes an elastic liquid (Lurie, 1980), for
which all configurations with different shifts are equivalent.

The problem is comprised of the determination of the interface Y(I), the stress field q(l)
and the displacement field 11(1) when the body and surface forces and the heat exchange
conditions on the boundary are given. In the case when large temperature gradients appear
in the body (due to the heat exchange), the position of the interface may be found from the
solution of the Stephan problem for the heat equation. Afterwards the stress and dis
placement fields arc obtained by solving the contact problem. In the case when the tem
perature gradients are small enough the mechanical stresses have the essential influence on
the phase transition and we need .10 additional condition to determine the interl~lce.

7. VARIATIONAL PRINCIPLES IN VISCOELASTICITY WIIICfI ACCOUNT

FOR PI lASE TRANSITIONS

We first deal with the isothermal loading when the body temperature is constant and
equal to 0o. Pix the moment 1~ 0 and the deformation history {y(r), u(r, e), (0 ~ r ~ I)}.
Denote by U.(1) the set of smooth surl~lces l(t), which lie in n and divide this domain into
connected subdomains n:'(I), and displacement fields /1°(1,0, which arc continuous in n,
continuously differentiable in n:'(I) and which have finite jumps of derivatives across the
surface yO(/). Choose an admissible clement (yO(/), 110 (1, ~» E U.(1). According to Roitburd
(1971), we assume that the free energy and entropy of the interface can be neglected.

We formulate the following principle of minimum free energy of a system:

The real interface y(/) and the real displacement field 11(1, ¢) minimize the function

E(I)='fI(t)-A(t)=p'flolnl+W(/)-A(t), W(/)=l PW,(/)dv+l pW2(/)dv
n~(tl l~(t)

(36)

on the set U.(/).
Consider the variation of the surface y(/) at which the domain n.(/) transforms into

n;(/). We assume that this transformation is described by the formula r' = r+Jw, where r,
r' are the radius vectors of points in the reference and in the perturbed configurations. The
function ow(t,~) is continuous in n and continuously differentiably in Q,(t). It has finite
jumps across Y(I) and vanishes on r. Denote by C>oll(t,~) the variation of the function
11(1, O. The complete variation of the displacement field 11(/, ¢) is given by Oll(t) = 00"

(/)+C>W(/)·VII(t). If IVII(/)I« I. then it may be shown that the complete variation of the
strain field e(t.~) is defined by the equality &(1) = oo£.(t) +Oll'(t) • Ve(t). where ooe(t) is
connected with C>01l(/) by (I).

From (1) and Stoke's formula it follows that
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-1' L cV i() v(e(t»dz:= N'-;-(e(t»'<5u(t)ds- net)
,III lie YIII

, {[V(e(l)! - ~~ (e(t»' Vu
T (t)1<5w(t) + ~:. (c:(t»' <5u(t)} <is

- 1.(1) (v, ~~ (e(t»)' (6u(/) - VuT(t), <5w(t» dr (37)

for any sufficiently smooth function Vee). Here net) is the unit normal to yet) pointing into
nl(t). An analogous formula can be derived for

<5 [ V(e(/» de.1,(1)

Using (8), (35)-(37), we find

(5E(/) = r (N'ul(/)-f(/»'bll(/)ds+ r n(/)'{[p(W2(t)-W,(/»!Jr lIn
- «(T ~ (t) , Vllr(t) - U I (I) , Vu f( I»] , <5w(I) + (u 2(I) - U I (I» , bU(t)} ds

- r (V'u(t)+pF(I»'«)u(t)-VuT(/h)w(t»)dr. (3X)JlI

f-rom (3R), the principle of minimum free energy and the arbitrariness in choice or
()u(f), ()II'(I) we obtain the equilibrium equation (10), the boundary condition (11), the
boundary condition on the interface yet)

(39)

and the energy ratio on the surface yet)

According to Berdichevskii (1983a), one can show that this identity reduces to

p[W2(t)- WI(t») = n(t)'u(t)'[Vur(t)-Vllf(t)]'n(t), (~Ey(t». (40)

Let us now consider the case of adiabatic loading, when there is no heat flow across
the surface of the body. For simplicity we assume that the heat capacity does not change
during phase transition: C I = "2 = c. Fix the moment t ~ 0 and the deformation history
{O(r)'}'(r),II(r,~),(O~ r ~ t)}. Denote by 8.(1) the set of admissible temperature values
(Jo(t), admissible interfaces y0(t) and admissible displacement fields u°(l, O. Choose the
element (OO(t), yO(t), u°(t, ';»E 8.(1). The internal energy and the entropy of the body an:
given by

<T>(t) = p[('f',o+H,oOo)+c«OO(t))2_0~)/(20o))lnl+PJlln~(t)I+ Wet),

fi(/) = p[H1o+c(O°(t)-Oo)/Oo]lnl+PJllng(t)I/Oo,

In,o(t)1 = r dv. (41)
JIl,"tn

We propose the following formulation of Gibbs' principle:
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The real temperature O(t), the real interface y(t) and the real displacement field u(t, e)
maximize the entropy Il(t) of the body on the subset of 8.(t), whose elements satisfy the
conservation law of energy (17).

From (17), (36) and (41) it follows that

(42)

According to Stoke's formula we have

<510 2(t)1 = 1n(t) . <5w(t) ds.
r(tl

Using this relation and (41), (42) we find

- O(t)-Oo1
O(t)<5H(t) = Pil () n(t)'<5w(t) ds-<5E(t).

o (II

(43)

From (38), (43) and Gibbs' principle we obtain the equilibrium equation (10), the
boundary conditions (II), (39) and the energy condition on the interface

O(t) - 0u
I'll --o;;-n(l) =p[W2(1)- W.(t»)n(t)-n(t)·O'(t)'[VuHt)-Vuf(I»), (eEy(I». (44)

This relation reduces to the scalar equality

0(1)-00 .
PIl---

O
-;:- =p[W2(1)- W.(I»)-n(I)'O'(I)·[VU~(I)-Vuf(t»)·n(I), (~Ey(t». (45)

We now calculate the time derivatives of the internal energy and the entropy of the
body. According to (41) we get

cl)'(t) = pcO(t)O'(t)101/Oo+PIlI02(I)I"+ W'(t),

Il'(t) = p[cO'(I)101+1l102(t)l']/OO' (46)

Let us suppose that during the time!!t the domain O/(t) transforms into 0,(1 + !!t). We
assume that this transformation is described by the equation r' = r+Aw, where the function
AW(I, ~) has the same properties as I5w(t, ~). Denote by w'(t) the limit of the ratio Aw(t)/AI
as !!t -+ O. Similarly to (38) we obtain

~i"(t) = rN·O'.(I)·u'(I)ds+1n(I)'{[p(W2(t)- W.(I))[Jr w

- (0'2(t)· VuHt) - 0'. (t), Vuf(t))]· w'(t) + (0'2(t) -0'. (I))' u'(t)} ds

-1 (V·O'(t»· (U'(I)-VUT(I)' W'(I»dv+S(I), (47)

where U'(I) is the complete derivative of U(I) and S(t) is defined by the formula



[ [
(~Q I~t ('~Q ]

S(t):: -.-~(t,Ok(t):t'(t)+ ~(t,r)(e(t)-t'(r»:(e(t)-e(r»drde
"fl I It) ct "II ct cr

[ [(~Q' It 2~Q, ]
+ ~~(t,O)e(t):t'(t)+~.~~(t,r)(e(t)-e(r»):(t'(t)-e(r))d! de

"H:'Ol ct () ct cr

~t "Q ]
+J (~~~.• ~(t-r*.,-r*)(e(t)-e(r»:(e(t)-e(r»)dr dr.

" ct cr

From ("'6), ("'7), the First Law of thermodynamics (26) and equalities (10), (II), (39)
and (4"') it follows that

O(t)fI'(t) = -S(I). (48)

Equality ("'8) denotes the Second Law of thermodynamics for a viscoelastic medium at
adiabatic phase transitions. Relations (10), (II), (32), (34), (39), (45) and (48) are the
complete system of equations for the description of the stresses in a viscoelastic body. For
the aging clastic medium S(£) == 0 and from (41), (45) and (48) we get

Equation (49) ddines the interface position at adiabatic phase transitions in the aging
dastil: nody. In the l:ase when the latent heat of transformation is neglel:ted (/1-+ 0) or
when the dimensions or the domain, which the sunstalKe ol:l:upies in the new phase, are
essentially less than the dimensions of the body (I n~( t)/n~(O)I/lnl -+ 0) this equation reduces
to (40).

X. DEVELOPMENT or A NUCLEUS OF MELT IN AN AGING VISCOELASTIC MEDIUM

Consider the melting or a viscoelastil: body at isothermal loading. The body is heated
to the phase transition temperature On and is in its natural state. At the first stage the
melting prol:ess consists of the growth of liquid phase nuclei. If the number of nuclei is not
too large and their mutual intluence is neglected we may study the development of an
isolated liquid phase nucleus in an infinite medium. Assume that the nucleus occupies the
spherical domain with radius a(J. Introduce the spherical system of coordinates (r, 9, qJ),
which origin lies in the centre of the sphere. At the moment t = 0 the pressure q == q(t) is
applied to the medium at infinity, (q(O) = 0, '1'(£) > 0). Under the action of the external
load dimensions of the nucleus increase. Denote by a(t) the nucleus radius at the moment
t ~ O.

For simplicity we consider the growth of the nuckus in the incompressible viscoelastic
medium. The creation of a nucleus of solid phase in a compressible clastic body and the
stability of this nucleus was studied in Johnson and Voorhees (19g7) and Strehlow (1988).

Suppose that the behaviour of the material in the solid phase is governed by the
constitutive equations of an incompressible homogeneous aging viscoelastic body

[ i'iJR ]pW1(t) = G(t) R(t,O)e(t):e(t)+ ~,-(t.r)(c(t)-e(r»:(e(t)-e(r))dr,
n (,r

a(£) = -3p(t), set) = 2G(t{e(O- r~~ (t, r)£'(r) dr}

c(t) = 0, (a(t) ~ r < :0), (50)
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where p is the pressure. The mechanical behaviour of material in liquid phase obeys the
constitutive laws of an incompressible elastic fluid

pH,'~(t) = O. O'(t) = -3p(t), set) = O. f(t) = 0, (0 ~ r ~ ao);

f(t) = - 3;., (ao < r < a(t». (51)

We obtain expressions (50) and (51) in the limit of (31 }-(34) as K,. K~ .... x.
Denote by Il(t, r) the radial displacement of the body points. \Vrite the incompressibility

conditions as

u'+2ur- 1 = 0, (0 ~ r ~ ao.a(t) ~ r < x); II' +2Ilr- 1 = -3;" (ao < r < a(t»,

where u' = cll/or.
Integrate these equations by r. From the identity of the radial displacement at r = a o

and r = aCt) we get

11=0, (O~r~an); ll=;.(ai:-rJ)r-~, (ao<r<a(t»);

II = A.(ai:-a1(r))r'~. (a(t) ~ r < ,x). (52)

Substitute these expressions into (50) and (51) and find the physil:al components of
the stress tensor a

a, = a:, :::: a,p = -I'(t). (0 ~ r < a(t»;

a, = -1'(t)-4;.L(r)r '. a;, = a". :::: -1'(t)+2;.L(t)r 1, (a(t) ~ r < OC),

[
1 \ it DR \ 1 ]L(t) = G(t) (an '-a (I) - n Dr (I. r)(an -a (r») dr . (53)

Integrate the equilibrium equation a;+2(a,-a;,)r- 1 = 0 with respel:tto r from aCt) to
infinity. Using (53) and the boundary l:ondition a,(t, C0) = -q(t), we have

(I,(/.a(t» = -q(/)-4;.L(t)a J(t).

Substitute (50H52), (54) into (40)

(54)

Introducing the dimensionless values G.(t) = G(t)/G(O). q.(t) = q(t)/(2G(0)}.),
a.(t) = a(t)/ao, :(t) = a:(t), we write this equation in the following form

[
q.(r)] (t 2R

I- G.(I) :(t)=R(t,O)-JIl Dr'(/.r):(r)dr. (55)

Equation (55) is a linear Volterra equation for the function :(t). After solving this
equation we find the interface radius from the identity a(t) = all: 16(/) and the displacements
and stresses from (52) and (53).

For a nonaging clastic medium «(I = const, R(t. r) = I) we obtain



:". KH. ARLTYU,¥,\:,> and A. D. DROZDOV

=(t) = [I-q(t) (2G';.)] I (56)

According to (56) the dimensions of the nucleus of the melt increase as the pressure
grows and tend to infinity as q(t) approaches 2Gi"

For an aging elastic medium (G = GU). QU. r) = 0) equality (55) reduces to the ordi
nary ditferential equation [G.(t)-q.(t)]:· = q~(t):. :(0) = I. The solution of this equation
IS

:(t)=exp { [£/(1')[2G(1')';.-£[(:)] Id1'}.
~II

(57)

From (57) it follows that the material aging causes the diminution of the dimensions
of the nucleus. Note that the radius of the nucleus depends on the loading history. A
discussion of this phenomenon can be found in Gorokh and Arkharov (1989).

Consider the standard viscoelastic body (Arutyunyan and Kolmanovskii. 1983) whose
behaviour is governed by the equation s' +;'.1' = 2(Gc' +;'Goe). where G and Gil arc the
current and the limit shear modulus. ;". I is the characteristic time of relaxatil1O. Equation
(55) reduces to the ditrerential equation

Suppose that the pressure tends towards the limit value qO and the characteristic time
of change of the external f(lrces is essentially less than the characteristic time or relaxation.
III this Glse we m;IY regard 1[. as a constant. which is equal t(l I[~ = It"/(2(;i.). The limit
value (If =(t) as t -. I is dclined hy

_II .= [I ._ I/'i( 2(;oi.)1 I. (58)

From (5(1) and (58) it follows that at C(lnstant l(lad the limit radius (If the nucleus of
the melt ill a viscoelastic medium c(lincidcs with the radius of the nucleus in an elastic
medium. whose shear modulus is equal to the limit shear modulus ofa viscoelastic material.

If I/, satislics the inequality 2Goi. < '10< 2Gi.. then the dimensions of the nueleus in
an elastic medium stay linite and the radius of the nucleus in a viscoelastic medium tends
to inlinity as t -. I.

The characteristic time for estahlishing thermodynamic equilibrium at the melting of
viscoelastic hody r = (I -£/~)[;,(" --£/~)I I depcnds on tht: intt:nsity of pressurt: and tends
to infinity as 'I" approacht:s tht: critical valut: 2(;,/.
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